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1) 

The amplitudes for boson-boson and fermion-boson interactions are calculated 
in the second order of perturbation theory in the Lobachevsky space. An essential 
ingredient of the model is the Weinberg 2(2j + l)-component formalism for 
describing a particle of spin j.  The boson-boson amplitude is then compared 
with the two-fermion amplitude obtained long ago by Skachkov on the basis of 
the Hamiltonian formulation of quantum field theory on the mass hyperboloid, 
p~ _ p2 = M 2, proposed by Kadyshevsky. The parametdzation of the amplitudes 
by means of the momentum transfer in the Lobachevsky space leads to the same 
spin structures in the expressions of T matrices for the fermion and the boson 
cases. However, certain differences are found. Possible physical applications 
are discussed. 

The  scat ter ing ampl i tude  for  the two- fe rmion  in teract ion was ob ta ined  
in the L o b a c h e v s k y  space  in the second  order  o f  per turba t ion  theory as 

[Skachkov  (1975a),  equat ion (31)] 

4m2 4g2 (O' l l l~)(O'2f l t~)  - -  (O' lO'2)f l l~2 

T ~ ) ( k ( _ ) p ,  p)  = _g2  p2 + 4m2 1~2 + 4m2 

8g2p#eo icr l [p  x m] + i~r2[p x m] 
m 2 I.L 2 + 4 ~  2 

2 2 2 m 4 8g~ p0aeo + 2p0a~0(p �9 ae) - 

m 2 i1, 2 + 4m 2 

-- 8g~2 (~176 (1) 
m 2 i.~ 2 + 4m 2 

t Escuela de Ffsica, Universidad Aut6noma de Zacatecas, Zacatecas 98000, ZAC., MExico. 
Intemet address: VALERI@CANTERA.REDUAZ.MX. 

2On leave of absence from Department of Theoretical and Nuclear Physics, Saratov State 
University, Saratov, Russia. E-mail: dvoeglazov@mainl.jinr.dubna.su. 

115 
0020-7748/96/0100-0115509.5010 �9 1996 Plcnu m Publishin s Corporation 



116 D v o e g l a z o v  

gv is the coupling constant. This treatment is based on the use of the formalism 
of separation of the Wigner rotations and parametrization of currents by 
means of the Pauli-Lyuban'sky vector (Shirokov, 1951, 1954, 1957, 1958; 
Chou and Shirokov, 1958; Cheshkov and Shirokov, 1962, 1963; Cheshkov, 
1966; Kozhevnikov et al., 1972). The quantities 

[m(Ao2+ m)] 1/2 [ m ( A y  m ) ]  '/2 
a~ 0 ---- , fta = HA 

are the components of the 4-vector of a momentum "half-transfer." This 
concept is closely connected with a notion of the half-velocity of a particle 
(Chernikov, 1957, 1973). The 4-vector A, 

A = A p ~ k = k ( - ) P = k - P (  k~ Po ~k'p )m (2a) 

(2b) Ao = (A~ lk)o = (kopo - k-p)/m = ( m  2 + A2) 1/2 

can be regarded as the momentum transfer vector in the Lobachevsky space. 3'4 
This amplitude has been used for physical applications in the framework of 

Kadyshevsky's version of the quasipotential approach (Kadyshevsky, 1968a, b; 
Kadyshevsky etal. ,  1972; Skachkov, 1975a,b; Skachkov and Solovtsov, 1978). 

3I keep the notation and terminology of Skachkov (1975a, b) and Skachkov and Solovtsov 
(1978). For example, the vector current, taking into account the Pauli term, is given by 

{ o-] 
jo%.(P, k) = a(,(p) g,T . - f ,  ~-m q" u~,.(k), q = p - k (3) 

and 

1/2 

jg~.(p, k) = ~ jg~p(k(-)p, p)D~,,.{V-'(Ap, k)) (4) 
o'p=-- I/2 

where D~,{  V-I(A. k)} = ~ D'/2{ V-t(Ap k)}~," D'/2(A) -= Do/2.~ is the Wigner matrix p,. t-' ~ ' ' 
of the irrieducible representauon of the SU(2) group (or rotation group). The technique of 
construction of DJ(A) can be found in Novozhilov (1975, pp. 51, 70). 

4In general, for each particle in the interaction one should understand under the 4-momenta 
p,~ and k, ~ (i = 1, 2) their covariant generalizations/~, k~ (e.g., Shirokov, 1951, 1954, 1957, 
1958; Chou and Shirokov, 1958; Cheshkov and Shirokov, 1962, 1963; Cheshkov, 1966; 
Kozhevnikov et al., 1972; Faustov, 1973; Dvoeglazov et al., 1991): 

~ ' k  
I~ = (A~'k) = k - ~ (ko ~0 T ~ - ~ )  

= (Afflk)0 = (m 2 + !~2) '/2 

w i t h  ~ = P l  + P2,  / ~ l ~ l )  = (,/l/t, 0) .  However, we omit the open dots above the momenta in 
the following, because in the case under consideration we do not miss physical information if 
we use the corresponding quantities in c.m.s., Pt = -P2 = P and kl  = - k 2  = k.  
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On the other hand, Joos (1962) and Weinberg (1964a,b, 1969) proposed 
an attractive 2(2j + 1)-component formalism for describing particles of higher 
spins. As opposed to the Proca 4-vector potentials, which transform according 
to the (1/2, 1/2) representation of the Lorentz group, the spinor 2(2j + 1)-compo- 
nent functions are constructed via the representation (j, 0) ~ (0,j) in the Joos-  
Weinberg formalism. This description of higher spin particles is on an equal 
footing to the description of the Dirac spinor particle, whose wave function 
transforms according to the (1/2, 0) ~ (0, 1/2) representation. The 2(2j + l)- 
component analogs of the Dirac functions in the momentum space are 5 

~(P)  = k2-/ ~DJ(a- '*(p))~] (5) 

for the positive-energy states, and 

(M~l/2( D J(a(p)O0r2])~ * 
T'(p) = ~,~) kDj(cL_I,(p)O[Ir2])(_ 1)z]~) 

(6) 

for the negative-energy states (Novozhilov, 1975, p. 107), with the follow- 
ing notations: 

{x(p) = P0 + M + (o" p) 
[2M(po + M)] It2 ' Ott/21 = -icr 2 (7) 

For instance, in the case of spin j = 1, one has 

Dl({x(p)) = 1 + (J" p) + ( j .p)2 (8a) 
M M(po + M) 

Dt({x-l*(p)) = 1 ( j . p )  + ( j .p)2 (8b) 
M M(po + M) 

( j .p)2 ] 
Dl(ct(p)OElrZ]) = 1 + ( M )  J ' p  + M(-~o~I4)'jOtH (8C) 

( j .p)2 -] 
Dl(vt-lt(p)OB/2]) = 1 (J 'P)  + . . . .  /OtH (8d) 

M M(po + M)_] 

(Otlr2 l, Otl] are the Wigner operators for spin 1/2 and 1, respectively). In 
spite of the relative antiquity of this formalism, in our opinion it does not 
deserve to be retired. From the phenomenological viewpoint this approach 
provides the necessary framework for constructing a QCD-based effective 

~These functions obey the orthonormalization equation, ~tt(p)T00~(p) = M, where M is the 
mass of the Joos-Weinberg particle. A similar normalization condition exists for T'(p), the 
function of "negative-energy states." 
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field theory of higher spin hadronic resonances and could yield new insights 
into the quark structure of these excited hadrons. Recently, much attention has 
been paid to this formalism (Ahluwalia and Ernst, 1992a,b, 1993; Ahluwalia 
et al., 1993a; Ahluwalia and Goldman, 1993) [see also Sankaranarayanan and 
Good (1965a, b), S ankaranarayanan (1965), and Dvoeglazov (1994a-d) regard- 
ing similar problems]. Unfortunately, the older work devoted to this formalism 
missed the possibility of another definition of negative-energy bispinors 'l/'(p) 
= S[ll~(P) -- ~ t l l ~ ( P )  -- ~/5~ like the Diracj  = 1/2 case. 6 Here Sill is 
the charge conjugation operator fo r j  = 1 (Ahluwalia et aL, 1993a); ~ is the 
operation of complex conjugation. This definition, based on the use of another 
form of the Ryder-Burgard relation (Ahluwalia et al., 1993a; Ahluwalia and 
Goldman, 1993), leads to a different physical content: in the latter case a boson 
and its antiboson have opposite relative intrinsic parities (like Dirac spinor 
particles). This is an example of another class of Poincarr-invariant theories 
(Bargmann-Wightman-Wigner-type quantum field theories (Wigner, 1965). 
This remarkable fact, which has been proven in Ahluwalia et al. (1993a) and 
Ahluwalia and Goldman (1993), hints that the problem of the adequate choice 
of the field operator has profound physical significance. 

The Feynman diagram technique has been discussed (Weinberg, 1964a,b, 
1969; Hammer et al., 1968; Tucker and Hammer, 1971; Shay and Good, 
1969; Novozhilov, 1975; Dvoeglazov and Skachkov, 1984, 1987, 1988) in 
the above six-component formalism for particles of  spin j = 1, using the 
Lagrangian 7,8 

~ 1 
�9 .~ = ~(x)Fo.vVoVvX~(x) - M2~(x)Xlr(x) - -~ F~, F ~  

ek eK 
+ - ~  Fr + ~ Oa Fr (9) 

In the above formula we have V~ = - iOr -T- eA~; Fr = Or - O~Av. is 
the electromagnetic field tensor; A~ is the 4-vector of  the electromagnetic 
field; ~ ,  ~ are the six-component wave functions (WF) of a massive j = 1 
Joos-Weinberg particle. The following expression has been obtained for the 
interaction vertex of the particle with the vector potential (Hammer et al., 

6I do not treat here the new Majorana-like constructs in the (j, 0) ~ (0,j) representation space 
(Ahluwalia et al., 1993b, 1994a,b), referring the reader to our recent work (Dvoeglazov, 
1994e, 1995). 

7 In the following I prefer to use the Euclidean metric because this metric has been applied in 
many papers on the 2(2j + 1) formalism. 

8The expression for the Lagrangian has been generalized in Dvoeglazov (1994a-d). In this 
paper we are still going to use the previous one in order to emphasize features of the formalism 
relevant to our purposes. 
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1968; Tucker and Hammer, 1971; Shay and Good, 1969; Dvoeglazov and 
Skachkov, 1984, 1987) 

iek eK 
- e F ~ ( p  + k)f~ - - ~ - ~ 5 . ~ q ~  + ~ ~16,af~.~vqf~q~(P + k)~ (10) 

where F~,~ = "y,~ + ~13, "Y,,~, ~/5.,,1~, ~/6.~1~.~ are the 6 | 6 matrices which 
have been described in Barut et al. (1963) and Weinberg (1964a, b, 1969) 

and 

0 ~# 1 - Jdj  - J J i )  (1 
~lij = ~ij 1 -- JiJj - JjJi 0 

la) 

(o / (o o/ 
"Yi4 : "Y4i = - / J i  , ~/,~ = (11 b) 

~/s,~ = i[',/~., ~/~.]_ (12a) 

"Y6,~,~ = [~&., ~/p~]+ + 2 8 ~ 8 ~  - ['y~, ~&~]+ - 28~.8,,~ (12b) 

Yi are the spin matrices for a j = 1 particle, e is the electron charge, and k 
and K are quantities that correspond to the magnetic dipole moment and the 
electric quadrupole moment, respectively. 

In order to obtain the 4-vector current for the interaction of a Joos- 
Weinberg boson with the external field one can use the formulas of Skachkov 
(1975a,b), Skachkov and Solovtsov (1978), Shirokov (1951, 1954, 1957, 
1958), Chou and Shirokov (1958), Cheshkov and Shirokov (1962, 1963), 
Cheshkov (1966), and Kozhevnikov et al. (1972), which are valid for any spin: 

~163 = Sp~"(0), S~lSk - - - -  Sk(-)p'/~ DX{V-I(Ap, k)} (13) 

W~(p).D|V-~(Ap, k)} --- DIV-~(Ap, k)}" W~(k) + M(Ao + M) p~W~(k) 

(14) 

k~W~(p). D{ V-~(A,, k)} = -O{ V-'(A,, k)} -p~W~(k) (15) 

W~ is the Pauli-Lyuban'sky 4-vector of relativistic spin. The matrix 
D J { V - I ( A p ,  k)} is written for spinj = l as follows: 

D~J=l}{ V-l(Ap, k)} 

1 
( [ p  x k]  2 

2M(po + M)(ko + M)(A0 + M) 

+ [(Po + M)(ko + M) - k. p]2 + 2i[(po + M)(ko + M) 

- k.p]{J-[p x k]} - 2{J.[p x k]} 2) (16) 
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However, the formulas obtained in Dvoeglazov and Skachkov (1988) 9 

} M 2 Xt~,I(P) | ~/5 - ~-~ Et~I(P) (17a) 

• | ~/s + ~-7 ~(~)(P) (17b) 

S ;  l,~p.vSp = "Y 4.4{ Bp, v -- _ _  

S; l ' y5 ,~vSp  = 6i{-~-~2 

where 

• = p~W~(p) + p,,W~(p) 

• = p~W~(p) - p,,W~(p) 

1 {W.(p)W~(p) + W~(p)W~(p)} 

1 { W~(p)W~(p) - W~(p)W~(p)} 

(18a) 

(18b) 

(18r 

(18d) 

lead to the 4-current of a j  = 1 Joos-Weinberg particle more directly1~ 

9Attention is drawn to the definition of the ~'s matrix, which differs by a sign from the 
definition used in Shay and Good (1969) and Dvoeglazov and Skachkov (1988). 

t~ with the j = 1/2 case: 

S~I%,S p = 1 ~o{ 1 ~ p~ + 2~ts | W~(p)} (19a) 

2 Spl~.oSp = --m4~2 1 ~) ~(~)(p) + ~-~ "YS ~ • (19b) 

and then 

j~,~,(k(-)p, p) 

= 1 F~p{2g~eopr, + f~eoq~ + 4gxtW**(p)(o'~e)}~ v, gat = gv + f~ (20) 
m 

The indices p indicate that the Wigner rotations have been separated out and thus all spin 
indices have been "reset" on the momentum p. One can rewrite (Skachkov, 1975b) the 
electromagnetic current (20): 

j~'~P(k, p) = _e._m_m ~p{ 
~eo g~s(q2)(P + k)~ 

+ g~(q2) W~(p)(~. ~) - ~ 

g~ and g~ are the analogs of the Sachs electric and magnetic form factors. Thus, if we regard 
gs.r.v as effective coupling constants depending on the momentum transfer, we can assure 
ourselves that the form of the currents for a spinor particle and for a j  -- 1 boson is the same 
(with Wigner rotations separated out). 
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�9 % , v p  "apv  " ~  v "~pV j .  (p, k) = j .(~(p, k) + j ~f~(p. k) + j ~(~(p, k) (22a', 

j,(~(p,'~?~ k)=-,sf;:,{(p+ k)~(l +M~o-~-M)'}~,(J'A) 2 \I (22b] 

j ~(~(p, k) (p + k), + W~(p)(J. A) - 

(22c) 

where 

T~tp ~ '  k -  + t T(2) ,,~f-2p( ( )P, P) = ~J~JJ,,2p (k ( - )p ,  P)~J~JJ~2p (26) 

(j .  A) 2 
,/~.(~,(p, k) = + 

I W~(p)(J.A)- I } + ~ ~ (J.A)W~(p) ~, (22d) 
.J 

Let us note an interesting feature (Ahluwalia and Ernst, 1993; Dvoeglazov, 
1994c). The 6-spinors ~(p) and T'(p) defined by (5) and (6) do not form a 
complete set: 

- -  - -  ( 1  Sp @ Sp)(23)  
1 M {~(P)~(P) + T'(p)T'(p)} = Sp 1 | Sp I 1 

But if we take ~ = ~/sT'(p), we can obtain the complete set. Fortunately, 

~176 ) = 0 ( 2 4 )  

what permits us to keep the parametrization (4). As a matter of fact, in 
(22b)-(22d) we have used the second definition of negative-energy spinors 
(Ahluwalia et  al., 1993a; Ahluwalia and Goldman, 1993). 

Next, let me represent the Feynman matrix element corresponding to 
the diagram of the two-boson interaction, mediated by the particle described 
by the vector potential, in the form (Skachkov, 1975a, b; Skachkov and Solovt- 
sov, 1978; Dvoeglazov and Skachkov, 1984, 1987) (see footnote 4) 

( P l ,  P2;  0"1, or21 f'(2)lkl, k2; 1"1, 11)2) 

1 
= ~ D + (J=mv-l:A - ~D* (J=I)~V-I:A - ~ crl{Ylp I ~ 6~,, /'1111 o'2o'2p / ~, ~ ,  /-/211 

~yip,~ip,~ik = -- 1 

~l ,2p "=I) kl)}D)~ik~ I{ ( ~, kl)} • T~>(k(-)p, p)D~i,~,k{V-1(Ap,, (j=1) V-~ A 

X ~ , ~ , r ~  ~j=l) fV-ItA, p2, k2)}D~{V-1(A~, k2)} (25) 



122 Dvoeglazov 

~*, ~ are the analogs of Pauli spinors. The calculation of the amplitude (26) 
yields (Po = -ip4, Ao = --iA4) 

7'c2)(k(-)p, p) 

= g2J'[po(Ao + M) + ( p ' A ) ]  2 --  M3(Ao + M)  

t M3(A0 -- M )  

+ i(J' + J2)'[P X A] [ p~176 + M) + p ' A  M M 3 

(Jl" A)(J2" A) -- (Jl" J2) A2 + 
2M(Ao - M) 

1 J t ' [ P  x A]J2-[p X A]'[ 
(27) 

M 3 A0 - M J 
We have assumed gs = gv = gr above, motivated by group-theoretic reasons 
and by the analogy discussed in footnote 10. Expression (27) reveals the 
advantages of the 2(2j + 1) formalism, since it looks like the amplitude for 
the interaction of two spinor particles with the substitutions 

1 1 
2M(A 0 -- M) ~ ~-5 and J ~ r 

The calculations hint that many analytical results for a Dirac fermion could 
be applicable to describing a 2(2j + 1) particle. Nevertheless, an adequate 
explanation is required of the obtained difference. Very likely, its origin lies 
at the kinematical level. Fre.e-space (without interaction) Joos-Weinberg 
equations admit acausal tachyonic solutions (Ahluwalia and Ernst, 1992b)" 
"Interaction introduced in the massive Weinberg equations will couple to both 
the causal and acausal solutions and thus cannot give physically reasonable 
results." However, we have used the Tucker and Hammer (1971) approach, 
which does not possess tachyonic solutions. ~t 

For the sake of completeness I also present the amplitudes for interaction 
o f j  = 1 and j  = 0 particles, j = 1/2 andj  = 0 particles, and j  = 1/2 and j  
= 1 particles. We use the equation for the 4-current of a spinor particle (fv 
= 0) defined by formula (21), equation (22b) with J = 0 for a scalar particle 
(e.g., Rohdich, 1950), and equation (22c) for the 4-current of a j  = 1 particle 
in the Joos-Weinberg formalism. Following the technique of "resetting" 
polarization indices, we obtain in the first case 

t~ I am not going to deal further with this subject in the present paper. The description of 
dynamics based on a new kinematical basis (Ahluwalia and Ernst, 1992a, 1993; Ahluwalia 
et al., 1993a; Ahluwalia and Goldman, 1993) will be given in detail elsewhere. 
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gogi {--2m~(A ~ + rot) 
~'(~ P) = 2mr(A? - m0 

+ [p~176 + ml) + (p'A,)l(p~ + pO + ~ + 4 )  

+ i j . [p  • A,](pO + pO + ~ + 4)} (28) 

,F(2) it. which has a similar form to -otu2)~,, P), which is given below. 
As a result of lengthy calculations one can write the boson-fermion 

amplitudes in the following form: 

~,(2) r k 2gogla {-2m~(A ~ + ml) 
oom~ , P) = (2ml)3rZ(AO _ m0(A o + ml)ir2 

+ [p~176 + ml) + (p'AO](p~ + pO + ~ + ~)  

+ io .[p  x Atl(p ~ + pO + ~ + ~)} (29) 

and 

~-~2~ ~.  k ) =  
I ( l / 2 ) ~ v '  

2gl gt~ {_2m~(Ao + 
(2mt)3a(Ao t ---'~I)(A ~ + m2) I/2 mr) 

+ [p~176 + mr) + (p'At)l(p~ + pO + ~ + ~)  

+ i o t - [ p  X Atlfp ~ 1 7 6  

i J2"[P x A2][(p~ + p~176 + ml) + (P'A0(P~ + pO + mt + m2)2] 
- m--2 2(p ~ + mO(p ~ "T m2) _[ 

- m l { ( t r l . A 2 ) ( J 2 . A t )  - (oq "J2)(At "A2) + iJ2" [Al • A2]} 

+ o q .  [p X AI] J2" [P • A2] 

We have used the notation 

2m2(p ~ + ml)(p ~ + m2)J 
(30) 

k 

and pl ~ = (p2 + m~)l~,~ = (k 2 + m~)la, pO = (p2 + m~)W2,~ = 
(k 2 + m~) l'z. 
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DISCUSSION AND POSSIBLE PHYSICAL APPLICATIONS 

The main result of this paper is the boson-boson amplitude calculated 
in the framework of the Joos-Weinberg theory. The separation of the Wigner 
rotations permits us to reveal certain similarities with thej  = 1/2 case. Thus, 
the result provides a basis for the following conclusion: if the existence of 
the Joos-Weinberg bosons could be proven, 12 many calculations produced 
earlier for fermion-fermion interactions mediated by the vector potential 
could be applicable to processes involving this matter structure. Moreover, 
the main result of this paper gives a certain hope of the possibility of a 
unified description of fermions and bosons. Now, I realize that all the above 
mentioned is not surprising. The principal features of describing the particle 
world on the basis of relativistic quantum field theory are not in some special 
representation of the group, (1/2, 0) �9 (0, 1/2) or (1, 0) q) (0, 1), or (1/2, 
1/2), but in the Lorentz group itself. Several older papers (e.g., Ohmura, 
1956) and recent work (Bruce, 1995) support this conclusion. However, the 
difference between the denominators of the amplitudes necessitates further 
study of the (1/2, 0) ~ (0, 1/2) and (1, 0) (~ (0, 1) representations. These 
representations, of course, are contained in the general scheme of Joos and 
Weinberg. 

After the appearance of Ahluwalia and Ernst (1992b) and Dvoeglazov 
(1994a-d) (see also Evans, 1994) we seem to be forced to use equations of 
this approach 13 

[~/~m~2~'2Ja~t0~2 "'" 0~2i + M2J]W(x) = 0 (32) 

for describing higher spin particles. In the framework of the standard Proca/ 
Rarita-Schwinger approach we deal with many contradictions in the particle 
interpretation of the field transforming on the corresponding representations 
of the Lorentz group: e.g., acausal solutions even at the kinematical level; 
the absence of a well-defined massless limit; nonconsistency after the intro- 
duction of interactions; longitudity of the antisymmetric tensor field after 
quantization, which contradicts the classical limit and the Weinberg theorem; 
longitudinal nonpropagating solutions of Maxwell's equations, which could 
lead to speculations on a "massive" photon, "tired" light (Evans, 1994) and 
the loss of renormalizability of modern quantum field models, etc. 

Second, it was realized that a gluon can be described as a massive 
particle with dynamical mass appearing due to the existence of the color 

12As mentioned in this paper and in Ahluwalia et al. (1993a) and Ahluwalia and Goldman 
(1993), probably the crucial experiment for the Joos-Weinberg boson could be based on the 
determination of relative intrinsic parities of a boson and its antiboson. 

13See Ahluwalia et  al. (1993a) and Ahluwalia and Goldman (1993) for a discussion of the 
possible additional term ,/~ u.v in the mass term for integer spins. 
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charge and the self-interaction. This treatment permits one to eliminate some 
contradictions in the results of calculations of the proton form factor and the 
effective coupling constant as(q 2) on the basis of QCD [for recent discussion 
see Field (1994) and Consoli and Field (1994)]. Therefore, the presented 
amplitude could serve as a basis for describing gluonium, the bound state of 
two massive gluons. The fermion-boson amplitudes could be applied for 
describing the quark-diquark composite system. 

For 30 years the quasipotential approach to quantum field theory (Logu- 
nov and Tavkhelidze, 1963; Kadyshevsky, 1968a,b; Kadyshevsky et al., 1972) 
was regarded to be the most convenient and sufficiently general formalism 
for calculation of energy spectra of composite states. In the Bethe-Salpeter 
approach one has a nonphysical parameter (relative time), difficulties with 
the normalization of the bound-state wave function, etc. All this necessitates 
constraints on the wave function. As a matter of fact, they lead to approaches 
which are equivalent to the quasipotential one. For recent discussion see 
Crater et al. (1992) and Dvoeglazov et al. (1993b, 1994). Therefore, one can 
use equations for the equal-time (quasipotential) wave function to achieve 
the goals discussed above. For example, for a composite system formed by 
a fermion and a boson of nonequal mass the following equation was given 
(in the Kadyshevsky version of the quasipotential approach) in Linkevich et 
al. (1983): 

2D~ - Do _ 

- - l v ~ v 2 f  d3~Vvlv2c~ l~)cI)v lU2(]~ ) (33) 
(2"tr) 3 ~ 1  --C*le2,t', 

For work itealing with the phenomenological description of hadrons in the 
(j, 0) �9 (0, j )  framework see Dvoeglazov and Khudyakov (1993, 1994), 
Dvoeglazov (1994f), and Dvoeglazov et al. (1993a). 

Finally, not having any intentions to criticize theories based on the 
concept of vector potential, in our opinion, the principal question is not 
yet solved. It is not in formal advantages of one or another formalism 
for describing j = 1 (or higher spin) particles, but in "the nature of 
Nature's mesons. ~' 
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